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Abstract
This systematic literature review explores the critical cybersecurity challenges associated with autonomous
vehicles (AVs), with a particular focus on message spoofing in Vehicle-to-Vehicle (V2V) communication. As AVs
increasingly rely on interconnected systems for navigation, coordination, and decision-making, they become
vulnerable to sophisticated cyber threats that can undermine their operational safety and reliability. Message
spoofing—where false or malicious data is injected into V2V communication channels—can mislead vehicle
responses, cause unsafe maneuvers, and disrupt overall traffic flow. This study examines existing detection
and mitigation strategies, emphasizing the growing importance of artificial intelligence (AI) in enhancing AV
cybersecurity. Through a systematic analysis of the literature, the review identifies key vulnerabilities in vehicular
communication systems and highlights AI-based anomaly detection as a promising solution for identifying
spoofing attacks in real time. This research underscores the necessity of developing comprehensive security
frameworks to ensure the safe integration of AVs into modern transportation systems.
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1. Introduction

The advancement of autonomous vehicles (AVs) marks a revolutionary shift in transportation, integrat-
ing artificial intelligence (AI), sensor technologies, and Vehicle-to-Everything (V2X) communication
to enhance mobility, safety, and efficiency. As these vehicles increasingly rely on digital ecosystems
to navigate roads autonomously, they become highly dependent on real-time data exchange with
other vehicles, infrastructure, and pedestrians. However, this interconnectivity also introduces signifi-
cant cybersecurity challenges, making AVs susceptible to cyberattacks that could compromise their
functionality, safety, and public trust [1].

Cybersecurity in AVs is a rapidly evolving field, with researchers and industry experts working to
identify, mitigate, and prevent cyber threats targeting V2X communication. Attacks such as message
spoofing, denial-of-service (DoS) incidents, and sensor manipulation pose serious risks to both AVs
and civilians. Cybercriminals can exploit vulnerabilities to manipulate vehicle behavior, cause traffic
disruptions, or even endanger lives [2]. The complexity of AV systems requires robust security measures
to ensure data integrity, system resilience, and passenger safety. Without effective cybersecurity
mechanisms, the widespread adoption of AV technology could be significantly hindered [3].

Even if the vehicle, its internal systems, and its communication with other vehicles are fully protected
against cyber threats, an attacker may carry out an attack in the environment where the AV is moving.
A possible attack of this kind is represented by the GPS spoofing attack, for example, real-time GPS
spoofing attack detection exploiting a Bhattacharyya distance metric in the CARLA simulator [4].

The motivation behind this study stems from the increasing reliance on V2X communication in
autonomous mobility and the associated cybersecurity risks. The growing number of real-world
cyber incidents, such as the 2015 Jeep Cherokee hack [5], has demonstrated the vulnerabilities in
modern vehicle systems. In that case, researchers remotely gained control over a vehicle’s braking and
acceleration, highlighting the potential dangers of unsecured automotive networks. Additionally, GPS
spoofing attacks have been shown to manipulate vehicle navigation systems, leading to unsafe driving
decisions [6]. These threats underscore the urgent need for improved security solutions. Furthermore,
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international standards such as the ISO/SAE 21434 standard [7] have emphasized the importance
of developing a structured approach to automotive cybersecurity. While these regulations provide
guidelines, the fast-paced evolution of AV technology means that security measures must continuously
adapt to emerging threats [8].

Ensuring that communication in AVs is secure is critical to their safe operation. One major threat in
this domain is message spoofing in Vehicle-to-Vehicle (V2V) communication, where malicious actors
inject false data to manipulate AV behavior. Such incidents can result in traffic disruptions or even
accidents by misleading the system and causing incorrect decision making [9].

Sedar et al. [10] explore anomaly detection based on AI as a promising solution for detecting and
preventing real-time cyber threats. The study highlights how AI techniques can analyze vast amounts
of V2X communication data to identify suspicious activity, making them a key component of future AV
security architectures.

The aim of this study is to investigate how message spoofing attacks affect V2V communication, what
strategies are used to detect and mitigate these threats, and explore how AI-based anomaly detection is
used against spoofing in V2V communication.

The research will be conducted through a systematic review of the literature (SLR) [11]. The current
state of the art on V2V message spoofing and AI-based countermeasures will be analyzed. The findings
will facilitate the identification of key trends and gaps in current defense strategies. This research will
contribute to the advancement of cybersecurity in autonomous vehicle ecosystems by highlighting
trends and giving an overview into how AI can be applied to make V2V communication safer.

1.1. Problem statement

The cybersecurity of AVs has become a critical concern, particularly as V2V communication plays an
increasingly vital role in AV coordination and decision-making. V2V communication enables real-time
data exchange between vehicles, improving traffic efficiency and road safety. However, this reliance on
wireless communication also introduces significant security risks that could be exploited by malicious
actors [9].

One of the most pressing concerns in V2V communication is message spoofing, where attackers inject
false data into the network, misleading AVs into making incorrect decisions. Such attacks can disrupt
traffic flow, cause accidents, and undermine trust in autonomous driving systems. Understanding the
mechanisms behind message spoofing and developing effective detection and mitigation strategies are
critical to ensuring the security of AV networks [2].

AI offers a promising approach to strengthening AV cybersecurity. AI-driven models can analyze
patterns in communication data to detect anomalies and identify potential cyber threats in real time
[6]. This research explores the application of AI-based techniques for enhancing AV security, with a
particular focus on detecting and mitigating message spoofing attacks in V2V communication.

Addressing these challenges is crucial for the safe integration of autonomous vehicles into modern
transportation systems. To guide this study, the following research questions have been formulated:

1. How do message spoofing attacks compromise the security of Vehicle-to-Vehicle (V2V) communi-
cation in autonomous vehicles?

2. What strategies are used to detect and mitigate message spoofing attacks in V2V communication?
3. How is AI-based anomaly detection used in relation to cybersecurity in autonomous vehicles,

particularly against spoofing in V2V communication?

1.2. Scope and limitations

This study focuses on the cybersecurity threats associated with Vehicle-to-Vehicle (V2V) communication
in autonomous vehicles (AVs), with a particular emphasis on message spoofing attacks. While the
broader Vehicle-to-Everything (V2X) ecosystem, including Vehicle-to-Pedestrian (V2P) communication,
presents additional security concerns, this research primarily examines V2V communication due to its
critical role in AV coordination and decision-making.
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The scope of this research is defined by three key focus areas:
Message Spoofing in V2V Communication – Investigating how adversaries manipulate AV behavior

by injecting false messages into the network, leading to unsafe driving decisions and potential traffic
disruptions [2].

Detection and Mitigation Strategies for Message Spoofing – Evaluating existing security mechanisms
and exploring their effectiveness in preventing malicious data manipulation [2].

AI-Based Anomaly Detection for Cybersecurity in AVs – Examining how AI techniques can enhance
real-time threat detection and improve the resilience of V2V communication networks [6].

Although the study acknowledges cybersecurity threats in V2X communication more broadly, in-
cluding denial-of-service (DoS) attacks [3] in V2P communication as an example, it will not be further
investigated in this study because the main focus remains on the spoofing of V2V messages. The
findings aim to contribute to the development of more secure AV ecosystems by offering insights into
AI-driven cybersecurity solutions. By narrowing the research scope to these specific areas, this study
ensures a focused and in-depth analysis within the constraints of available time and resources.

2. Background

The integration of autonomous vehicles (AVs) into modern transportation systems represents a signif-
icant technological advancement. These vehicles leverage advanced software, artificial intelligence
(AI), and cyber-physical systems to enhance mobility, safety, and efficiency. A key component enabling
this transformation is Vehicle-to-Everything (V2X) communication, which allows AVs to exchange
real-time data with other vehicles, infrastructure, and road users. However, this increased connectivity
also introduces critical cybersecurity challenges, requiring robust protection mechanisms to ensure the
reliability and safety of AV networks [5, 12].

2.1. Vehicle-to-Everything (V2X) Communication and Its Importance

V2X communication is fundamental to autonomous mobility, allowing vehicles to exchange critical
information such as speed, position, direction, and road conditions. The four primary modes of V2X
communication—Vehicle-to-Vehicle (V2V), Vehicle-to-Pedestrian (V2P), Vehicle-to-Infrastructure (V2I),
and Vehicle-to-Network (V2N)—work together to create a connected transportation ecosystem that
supports real-time decision-making and automation. Figure 1 illustrates the different V2X connectivity
modes within the Internet-of-Vehicles (IoV) paradigm, demonstrating their role in traffic efficiency and
safety [10].

Figure 1: V2X connectivity modes composing Internet-of-Vehicles (IoV) paradigm. Via Sedar et al. [10]
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Among these, V2V communication plays a crucial role in enhancing road safety by enabling vehicles
to share real-time data about their movements, allowing autonomous systems to predict and respond
to potential hazards. Similarly, V2P communication improves pedestrian safety by enabling AVs to
detect and communicate with pedestrians through mobile devices, wearables, or roadside infrastructure,
reducing accident risks in urban environments [10].

However, these systems rely on wireless communication protocols such as Dedicated Short-Range
Communications (DSRC) and Cellular Vehicle-to-Everything (C-V2X), which are vulnerable to cyberat-
tacks [5]. Securing these communication channels is essential to prevent unauthorized access, data
manipulation, and potential disruptions that could compromise AV safety.

2.2. Cybersecurity Threats in V2V Communication

Vehicle-to-Vehicle (V2V) communication is essential for enhancing AV coordination. This communica-
tion introduces significant cybersecurity challenges. Vehicle decision making and overall traffic safety
are compromised when AVs are exposed to malicious attacks through wireless communication. Some
threats in this domain include message spoofing, replay attacks, and man-in-the-middle attacks. These
threats can lead to severe safety risks [13].

2.2.1. Message Spoofing in V2V Communication

Message spoofing occurs when an attacker injects falsified messages into the V2V network. These
messages deceive the AVs into making unsafe driving decisions. They can manipulate vehicle behavior
by creating fake emergency warnings, altering speed, or inventing non-existent obstacles. These attacks
can lead to collisions on the road and dangerous traffic disruptions [10].

2.2.2. Other Cybersecurity Concerns in V2X Communication

While this study focuses specifically on message spoofing in V2V communication, it is worth mentioning
some of the different threats that exist in the V2X ecosystem:

Denial-of-Service (DoS) Attacks in V2P Communication: A DoS attack can overwhelm V2P com-
munication channels, preventing the transmission of critical safety messages between vehicles and
pedestrians. This can delay or block alerts that warn AVs about pedestrian presence, significantly
increasing the risk of accidents in high-traffic urban areas [10].

Sensor Manipulation Attacks: AVs depend on sensors such as LiDAR, radar, and cameras to perceive
their surroundings. Attackers can interfere with these sensor signals, causing vehicles to misinterpret
their environment and make unsafe driving decisions [12].

Weaknesses in Communication Protocols: Protocols like the Controller Area Network (CAN) bus lack
encryption, making them vulnerable to unauthorized access. Attackers can intercept and manipulate
V2X communication data, leading to severe security breaches [5].

2.3. Real-World Cybersecurity Incidents in AVs

Real-world incidents highlight the risks posed by cybersecurity vulnerabilities in AVs. One of the most
notable cases is the 2015 Jeep Cherokee hack, where researchers remotely gained control over the
vehicle’s braking and acceleration systems through its internet-connected infotainment system. This
incident underscored the dangers of unsecured V2X communication and the urgent need for robust
security mechanisms [12]. More incidents are described and discussed in chapter 5.1.

Similarly, documented GPS spoofing attacks have demonstrated how attackers can manipulate AVs
navigation systems, causing vehicles to follow incorrect routes or misinterpret their surroundings.
These incidents emphasize the necessity for advanced cybersecurity solutions to protect AVs from
evolving cyber threats [6].
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2.4. Cybersecurity Solutions in Autonomous Vehicles

As AVs continue to evolve, securing Vehicle-to-Everything (V2X) communication remains a critical
challenge. The interconnected nature of AVs makes them susceptible to cyber threats, including
message spoofing in Vehicle-to-Vehicle (V2V) communication and Denial-of-Service (DoS) attacks in
Vehicle-to-Pedestrian (V2P) communication.

Key Cybersecurity Strategies Several security mechanisms have been proposed to address vulnerabil-
ities in AV communication networks:

Cryptographic Security Protocols: Encryption techniques such as Public Key Infrastructure (PKI) and
lightweight cryptographic algorithms help protect V2X communication from unauthorized access and
data tampering while maintaining the low-latency requirements of AV systems. Secure authentication
protocols, including digital signatures and message integrity verification, further prevent attackers from
injecting malicious data into V2V and V2X communication channels [14].

AI-Based Intrusion Detection Systems (IDS): AI plays a crucial role in real-time threat detection by
analyzing patterns in V2X data streams. AI-driven anomaly detection can identify message spoofing
attempts, sensor manipulation, and abnormal network behavior, allowing for proactive cybersecurity
defense [8].

Blockchain for Secure Data Transmission: Blockchain technology provides a decentralized and tamper-
resistant framework for securing V2X messages. By recording communication logs in an immutable
ledger, blockchain enhances data integrity and prevents unauthorized modifications, reducing the risk
of message spoofing and other cyber threats [10].

Regulatory Compliance and Standardization: Adhering to international cybersecurity standards,
such as ISO/SAE 21434 [7], ensures a structured approach to risk management in AV ecosystems.
Strengthening regulatory frameworks and enforcing compliance across manufacturers and suppliers
will be essential for enhancing security in V2X networks.

Hybrid Security Architectures: A comprehensive defensemechanism combinesmultiple cybersecurity
techniques, such as cryptographic authentication, AI-based anomaly detection, and blockchain-secured
communication. These layered protections create a robust and adaptive security framework capable of
addressing evolving cyber threats in AV environments [5].

3. Method

This research will employ a systematic literature review (SLR) to analyze cybersecurity vulnerabilities in
autonomous vehicles (AVs). The method selection of a systematic literature review was chosen because
of different reasons. First of all, a SLR provides insights into cybersecurity concerns in AVs, revealing
themes such as trust, safety, and responsibility [15]. A SLR provides structure and replicable approach
to reviewing existing cybersecurity research in AVs. It also allows for the identification of vulnerabilities
that are recurring and mitigation strategies across multiple studies and papers. The literature review
will identify key threats in Vehicle-to-Vehicle (V2V) communication systems and examine AI-driven
defense solutions.

By applying an SLR on cybersecurity for AVs, this research will contribute to an understanding of
the security of V2V communication systems.

Based on the review in [16], a systematic literature review enables the identification of emerging
cybersecurity threats specific to CAVs. This approach will involve analyzing peer-reviewed journal
articles, case studies, and documented cybersecurity incidents, such as the 2015 Jeep hack [12], to
identify recurring themes and patterns in vulnerabilities, threats, and defenses.

Previous research has shown that conducting a SLR is effective due to its structured data collection
methods, comparative analysis of security threats, and identification of gaps in existing research
[11, 17]. The insights gained from this work will serve as a foundation for future research and practical
implementations aimed at strengthening AV cybersecurity.
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3.1. Systematic Literature Review Process

The SLR will follow the known guidelines that were proposed by Kitchenham and Charters [11]
and Petticrew and Roberts [18]. They outline an approach with multiple steps to follow in order to
systematically identify and analyze the relevant literature. The following text will provide the key
steps in the process.

In the first step we need to define clear research questions that will be answered by the SLR. The
questions define the scope of the study and will ensure that the review remains focused on the relevant
threats in cybersecurity within V2V communication, particularly in the context of message spoofing,
and how AI can improve detection.

The research questions have been defined in the problem section chapter in the introduction of this
study (1.1). The questions have been selected because they focus on specific cybersecurity threats
within V2V communication and AI-driven defense solutions.

The first two questions are related to the threat of message spoofing in V2V networks that can mislead
AVs with incorrect traffic information and potentially cause accidents on the roads [12].

The third question addresses AI-based anomaly detection as a solution. V2V is very complex, therefore
AI techniques are being explored for their potential of detecting and mitigating the message spoofing
attacks [15].

By narrowing the research to these areas, the aim of the study will be to provide an overview into
AV cybersecurity by addressing V2V spoofing and AI-driven defense mechanisms.

In order to ensure the study maintains its relevancy and quality of the selected studies, there needs to
be predefined inclusion and exclusion criteria that will be applied. This criteria will facilitate narrowing
down the number of articles that will be reviewed.

Inclusion Criteria:

• Peer-reviewed journal articles and conference papers.
• Studies published from 2015 to 2025 to ensure up-to-date findings from the last 10 years.
• Research explicitly addressing cybersecurity in AVs, with a focus on V2V communication and
message spoofing attacks.

• Studies exploring AI-driven cybersecurity solutions for detecting and mitigating threats in V2V
networks.

Exclusions Criteria:

• Non-English publications.
• Non-peer-reviewed sources.
• Studies excplicitly focusing on non-cybersecurity aspects of AVs (e.g., traffic control).

A systematic search will be conducted. The following databases will be prioritized, but journals and
papers from other databases will be used as long as they are relevant and match the inclusion criteria.

• IEEE Xplore
• SpringerLink
• Scopus
• Google Scholar (searching for papers)

It is also important to use the same search string in order to search for papers. The following search
string will be used for this SLR:

(”autonomous vehicle” OR ”connected vehicle” OR ”V2V communication”) AND (”cyberse-
curity” OR ”cyber threats” OR ”security vulnerabilities”) AND (”artificial intelligence” OR
”intrusion detection”) AND (”message spoofing”)
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The studies that are selected will be analyzed based on some key parameters. These key parameters
include:

Identified cybersecurity vulnerabilities – Threats in V2V communication with a particular emphasis
on message spoofing attacks. This includes potential consequences of successful attacks on AV safety
and decision-making.

Detection and Mitigation Strategies – Security mechanisms proposed in the literature to counteract
message spoofing. This includes cryptographic solutions, anomaly detection systems, and other security
frameworks.

Artificial Intelligence (AI) Applications – The role of techniques that are AI-driven and secure V2V
communication. This includes both supervised and unsupervised learning methods, and real-time
anomaly detection approaches.

The data that is extracted from the studies will be synthesized using a narrative synthesis approach
by Popay et al. [19] in order to identify common themes, trends, and research gaps in the papers.

To ensure the reliability and relevance of the studies, a quality assessment checklist adapted from
Kitchenham and Charters [11] will be used. Each study will be evaluated based on the following points:

• QA1: Clarity of the research objectives – The study must clearly define its research objectives,
describing the specific cybersecurity challenges to be addressed and the intended contributions
to the field of V2V communication security.

• QA2: Methodological rigor – The study should follow a well-defined research methodology,
including appropriate data collection, experimental setup, or analytical approach, ensuring that
the findings are based on robust and replicable methods.

• QA3: Relevance to the research questions of this study – The research must directly
contribute to answering at least one of the research questions related to message spoofing attacks,
detection and mitigation strategies, or AI-driven cybersecurity solutions in V2V communication.

• QA4: Transparency of the findings – The study should provide clear and detailed results,
including explanations of the methodologies, data sets, and evaluation metrics, ensuring that the
conclusions are well supported and reproducible.

Studies that do not meet these points will be excluded from the final synthesis.

After the final set of studies are selected, an analysis of relevant insights from the papers will be
conducted. Relevant insights include and focus primarily on identifying how each paper discusses
issues related to message spoofing, including their vulnerabilities, real-world implications, and specific
threats according to the authors. The attention will be particularly on the proposed mitigation strategies,
especially the strategies involving AI-driven anomaly detection techniques.

The key findings will be synthesized, by applying the narrative synthesis approach that is described
by Popay et al. [19], to identify recurring patterns and technological gaps across the literature. The
synthesis process will follow four main stages.

First, a theoretical framework will be developed to clarify how message spoofing attacks and AI-based
anomaly detection function within V2V communication. This has been done in chapter 2 by identifying
how spoofing compromises CV systems and how AI techniques mitigate these threats.

Second, a preliminary synthesis will be made to summarize the findings of the studies. This will be
achieved through tabulated comparisons.

Third, relationships between the data will be explored to see how different factors – such as the type
of systems targeted or the AI method applied – influence the outcome.

Finally, the robustness of the synthesis will be assessed by looking at the consistency and strength of
evidence of the conclusions across all studies.
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4. Results

This chapter presents the findings from the systematic literature review. The results explore how
message spoofing compromises Vehicle-to-Vehicle (V2V) communication in autonomous vehicles, the
methods used to detect and mitigate such attacks, and how artificial intelligence (AI) can be applied for
anomaly detection. The selected studies have been analyzed for their contributions, methodologies, and
findings in relation to these subjects. The first section combines the identification of spoofing threats
with mitigation strategies, while the second section focuses specifically on AI-based approaches to
anomaly detection in V2V communication.

The initial search string mentioned in the method section 3.1 produced 76 results on Google Scholar.
After applying the predefined inclusion and exclusion criteria, some studies were removed and 25
studies remained. These studies were reviewed using the quality assessment checklist, and 17 papers
were found to meet all criteria. In addition to this process, snowballing was used to identify further
relevant literature by examining both the references cited in the papers, but also the studies that cited
them. This snowballing process found 2 additional papers. Although primary databases were IEEE
Xplore, SpringerLink, and Scopus, studies that were found in other databases, such as ScienceDirect,
ResearchGate, and arXiv, were also included, as long as they were relevant and met the inclusion and
quality assessment criteria. In the end, the total number of reviewed studies was 19.

4.1. Message Spoofing in V2V Communication: Threats and Mitigation Strategies

This section examines how message spoofing attacks compromise the security of Vehicle-to-Vehicle
(V2V) communication in Connected Vehicles (CVs), and what strategies are used to detect and mitigate
them. Table 1 provides an overview of studies that address spoofing threats, vulnerabilities, and
mitigation strategies in CVs. It summarizes each paper’s focus area, identified cybersecurity threats,
research methodology, use of AI-based approaches, and key findings.

Message spoofing means that someone or something injects false or manipulated messages into a
V2V network with the goal of misleading the decision-making process. Several studies demonstrate
that spoofed messages can cause vehicles to do things they should not do, such as brake unnecessarily,
swerve into incorrect lanes, or misinterpret traffic conditions, directly threatening road safety. Accord-
ing to Javagal [20], spoofing is only one of many cyber threats introduced by vehicle-to-everything
(V2X) communication. When attackers target CV sensors and communication systems, the resulting
misinformation can propagate through the CV’s control systems, leading to faulty behavior.

CAN/LIN Spoofing: Spoofing attacks that target in-vehicle communication protocols like the
Controller Area Network (CAN) and Local Interconnect Network (LIN) are studied frequently. Kalkan
and Sahingoz [21] simulated spoofed RPM and gear signals and showed that repetitive patterns in these
messages make them suitable for machine learning-based detection. Similar to this, El-Rewini et al.
[22] emphasized the ease of manipulating LIN messages to control vehicle functions such as steering
and braking. Parandkar et al. [23] extended this by proposing deep learning models like DCNN and
SNN, which offer high detection accuracy, making them suitable for real-time use. Studies that address
CAN and LIN spoofing consistently used ensemble machine learning or deep learning models, with
detection accuracies over 95% in many cases. However, most models were tested only in simulation
environments, and practical integration still remains unaddressed.

GPS Spoofing: GPS spoofing, where adversaries feed false location data to vehicle systems, was
examined by Annabi et al. [24] and Gao et al. [25]. The attacks often exploit the low signal strength of
GPS and can redirect CVs or interfere with the navigation. Both of the studies recommend combining
AI models such as LSTM and Reinforcement Learning (RL) with blockchain-based authentication to
detect false signals. Most studies that mention GPS spoofing relied on learning models like LSTM or RL,
focusing on detecting anomalies in positional patterns. However, these approaches are rarely tested in
real-world driving scenarios and therefore have a limited practical applicability.

Perception Layer Spoofing: Studies by Pavithra et al. [26], Gozubuyuk et al. [27], and Neupane and
Sun [28] explore spoofing attacks that target perception systems like LiDAR and camera inputs. These
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types of attacks can often involve manipulations that are subtle in the environment, such as modified
road markings or light interference, which can mislead sensor-based object detection. To protect
and mitigate these attacks, one can use secure message verification, filtering techniques, and basic
encryption. However, compared to CAN and GPS spoofing, these spoofing attacks are underexplored
and few AI-based models are specifically trained to detect spoofed sensory input, which highlights a
gap in perception-layer defenses.

Spoofing in V2V Networked Environments: Several studies focused on spoofing attacks that
disrupt broader V2V communication or VANET systems. Onur et al. [29] demonstrated spoofing
detection on a mini CV platform using Random Forest (RF) with over 96% accuracy. Sharma et al. [30]
applied context-adaptive beacon verification for VANETs. Ming et al. [31] simulated spoofing in a
tolling scenario and highlighted the impact it had on traffic flow and the cost. Herman Muraro Gularte
et al. [32] wanted to push for multi-layered defenses using IDS, blockchain, and AI. While RF and
AdaBoost classifiers performed well on CAN spoofing, they showed higher false positives in broader
VANET settings. This suggests that algorithm performance may vary significantly by system context
and the need for better context-aware models.

General or Multi-Layered Spoofing Approaches: Some studies proposed spoofing mitigation
strategies that were broader and spanned multiple systems. Rathore et al. [33] recommended combining
cryptography with AI in a multi-layered security framework. Limbasiya et al. [34] reported 98.9%
accuracy using challenge-response authentication and radio frequency fingerprinting. Ali et al. [35] and
Ahmad et al. [36] recommended lightweight cryptographic schemes together with AI. Bharati et al. [37]
and Researcher [38] highlighted threat modeling and continuous monitoring through IDS. All of these
studies have a consensus on the importance of layered defenses and hybrid methods. The challenge
is in the integration and the need for unified evaluation metrics persist in order to compare different
algorithms and models with each other.

Summary: Across all groups, message spoofing is recognized as a widespread and threat that has a
very high impact in V2V communication. CAN and GPS spoofing are the most frequently addressed,
often using ensemble AI models. Perception-layer spoofing is significantly underexplored, despite its
potential for serious consequences. Moreover, most detection systems remain untested in real-world
environments, and there is a lack of standard metrics to compare performance across studies.

To better illustrate the relationship between spoofing threats and mitigation approaches, including the
role of AI, Figure 2 presents a conceptual flowchart. It visualizes the process of how spoofed messages
are detected in real time using AI-based anomaly detection models such as Random Forest and LSTM.

Figure 2: Overview of spoofing threats in V2V communication and AI-based mitigation strategies, including
anomaly detection models used for real-time detection and response.
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4.2. AI-Based Anomaly Detection

This section explores how AI-based anomaly detection is used to enhance cybersecurity in autonomous
vehicles, particularly in detecting and preventing message spoofing in V2V communication. Table 2
provides an overview of the studies that apply AI-based anomaly detection methods in CVs. The table
summarizes the techniques used, systems targeted, effectiveness, simulation environments, advantages
and limitations, and whether they are capable of operating in real-time scenarios.

Figure 3, 4, 5, and 6 show charts that provide an overview of the reviewed studies. The figures help
illustrate the scope of the reviewed literature, highlight common research focuses, and reveal research
gaps.

CAN Bus and In-Vehicle Network Detection: AI techniques are often applied to detect spoofing
in Controller Area Network (CAN) and other in-vehicle communication systems. Kalkan and Sahingoz
[21] tested ensemble classifiers including Random Forest, AdaBoost, and Neural Networks. They
achieved almost perfect accuracy in detecting spoofed RPM and gear signals. The work shows that
spoofed CAN traffic often follows a pattern that is detectable which makes it suitable for algorithmic
detection. Parandkar et al. [23] expanded on this by proposing energy-efficient deep learning models.
This included Deep Convolutional Neural Networks (DCNNs) and Spiking Neural Networks (SNNs)
that are capable of maintaining high accuracy while also being lightweight enough for real-time vehicle
integration. Similar to this, Researcher [38] introduced adaptive intrusion detection systems (IDS) that
can monitor CAN traffic in order to detect spoofed messages based on their behavioral anomalies and
continuously learning new patterns of attack over time. Studies in this group show that ensemble and
deep learning models are effective at detecting spoofing in CAN systems with high accuracy. However,
the deployment of these models is often limited to controlled simulation settings. Their practical
real-world testing remains limited.

GPS and Positioning System Detection: AI models that are advanced have also been proposed
for spoofing detection in GPS and other positioning systems. Gao et al. [25] applied Long Short-
Term Memory (LSTM) networks to identify GPS signal patterns that were not regular, together with
Reinforcement Learning (RL) for adaptive response strategies in dynamic spoofing conditions. These
models have their advantages in adaptability and long-term learning. This enables vehicle systems to
respond to evolving spoofing attacks. Most studies that address GPS spoofing rely on sequential AI
models like LSTM and RL. They are well suited to GPS data. However, these approaches are rarely used
and tested in real-world driving conditions. The challenges still remain in scaling them for real-time,
low-latency CV systems.

VANET and V2V Communication-Level Detection: AI-based spoofing detection has also been
applied to general and broader V2V communication environments such as Vehicular Ad Hoc Networks
(VANETs). Sharma et al. [30] developed a context-adaptive beacon verification (CABV) technique
that uses AI filters to detect spoofed messages by using contextual features from the communication
environment. By taking this approach, it minimizes computational overhead and enhances detection
precision. Onur et al. [29] demonstrated through real-world experiments with a mini CV platform the
effectiveness of Random Forest classifiers in detecting spoofed packets in live scenarios. The models,
however, displayed more false positives and that suggests the need for improvement. While these AI
approaches in VANETs show strong potential, the inconsistencies in detection performance across the
environments still remain. For example, while Random Forest achieved high accuracy in CAN-based
detection, their performance in VANET environments was more variable.

Summary: The literature that has been reviewed shows that AI-based anomaly detection is a
powerful tool for identifying spoofed messages across various components of CV systems. Ensemble
learning methods and deep neural networks consistently show high detection accuracy in CAN-based
spoofing scenarios. Sequential models like LSTM and RL are preferred for GPS-based attacks. Context-
aware models offer more efficient spoofing mitigation in VANET settings. Despite these advances, most
models are only validated and tested in simulation environments and only a few studies explore the
integration of these techniques into full CV control systems.
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Figure 3: This bar chart shows how many reviewed studies focused on each category of spoofing threat.

Figure 4: This bar chart displays the frequency of different AI methods applied across the reviewed studies.
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Figure 5: This pie chart shows whether the AI models were tested in simulation environments, real-world
settings, or a mix of both.

Figure 6: This pie chart illustrates the proportion of AI models that were described as real-time capable versus
those that were not or whose capabilities were unspecified.
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5. Discussion

This study explored the cybersecurity landscape in autonomous vehicles (AVs), focusing specifically on
message spoofing in Vehicle-to-Vehicle (V2V) communication and the potential of AI-based anomaly
detection mechanisms to mitigate such threats. The results from the systematic literature review (SLR)
reveal a consensus on the increasing sophistication of cyberattacks targeting V2V communication and
the urgent need for more robust, adaptive, and intelligent security frameworks.

5.1. Message Spoofing Threats in V2V Communication

Message spoofing emerged as a critical threat that can severely compromise the safety and decision-
making capabilities of AVs. As many studies emphasized, spoofed messages can lead to false alerts,
misdirected responses, and even collisions, especially in dense urban environments where communica-
tion latency and trust are paramount. Research such as that by Herman Muraro Gularte et al. [32] and
El-Rewini et al. [22] illustrated how both inter-vehicle and intra-vehicle systems—like LIN and CAN
buses—are vulnerable to injected falsified data, stressing the need for advanced message authentication
mechanisms and fallback safety protocols.

There are various examples of real-world incidents that include spoofing threats. For example,
Tesla vehicles have shown themselves being susceptible to GPS spoofing attacks [24]. These attacks
emphasize the need for robust communication security inside AVs. It is true that the technology of
AVs have advanced rapidly, with milestones like Google’s 140,000-mile autonomous driving by 2010,
VisLab’s intercontinental journey in 2013, and Tesla’s 2016 commercial launch of intelligent cruise
control [39]. However, security protections have not always been keeping up. According to Qayyum
et al. [39], this gap is evident in real-world incidents, such as Tesla’s 2016 autopilot failure where it
could not distinguish a white truck from the bright sky, Google’s collision with a bus, and Uber’s fatal
pedestrian accident in 2018. These incidents that were caused by cybersecurity weaknesses demonstrate
that the systems in AVs remain sensitive to cyber threats. By strengthening AI-based spoofing detection,
we are potentially going to save lives in the future from fatal accidents.

The findings suggest that certain systems within AVs, particularly those that involve communication
protocols such as the CAN bus and positioning systems like GPS, appear to be more vulnerable to
spoofing attacks than other systems. Studies like Kalkan and Sahingoz [21] and Parandkar et al. [23]
have demonstrated how spoofed messages on the CAN have the ability to easily manipulate critical
vehicle functions such as RPM or gear signals. Other studies, such as Gao et al. [25] and Annabi et al.
[24], emphasize how low-power GPS signals are susceptible to spoofing. These vulnerabilities are
concerning because they target the low-level communication and navigation systems in the vehicle
which could directly influence the core vehicle control.

Moreover, spoofing attacks were found across multiple layers of AVs. The literature, however, focuses
more on the network and communication layers, such as CAN, V2V, and GPS. The perception layer,
which includes sensors like LiDAR and radar, is mentioned in some studies, such as Gozubuyuk et al.
[27] and Neupane and Sun [28], but the attack types remain underexplored despite their potential to
mislead object detection and environmental awareness systems. This means that there is an imbalance
and it suggests that detection efforts we have today may not be fully aligned with all critical threat
surfaces.

5.2. Effectiveness of AI-Based Anomaly Detection

The findings also highlight how artificial intelligence, particularly through machine learning and deep
learning models, plays a transformative role in detecting spoofing attempts. Techniques such as anomaly
detection, context-aware filtering, and supervised classification models were applied across various
studies to successfully distinguish between legitimate and malicious messages. For instance, Onur et al.
[29] demonstrated how random forest models could detect spoofed packets with high accuracy, while
Sharma et al. [30] proposed context-adaptive beacon verification (CABV) to minimize computational
overhead in detection.
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Traditional machine learning models, such as Random Forest and AdaBoost, have shown high
detection accuracy in identifying spoofed messages [29, 21]. However, in real-time their performance
shows that complex traffic scenarios remain less explored. Deep Convolutional Neural Networks
(DCNNs) and Spiking Neural Networks (SNNs), which are deep learning approaches, offer better
adaptability which makes them promising for real-world deployment [23]. Their limitations lie in
their need for more computational resources and longer training periods. Context-adaptive signature
verification approaches [30] present solutions that are lightweight and suitable for VANETs, which
are networks that make it possible for nearby vehicles to communicate, but these approaches might
struggle with detecting sophisticated spoofing attacks. Overall, while ensemble learning models offer
ease of training together with robustness, deep and reinforcement learning techniques appear better
suited for future-proofing the security in AVs against evolving spoofing threats, because they can learn
complex patterns and dynamically adjust strategies based on interactions. Lastly, although results in
simulations are promising, the real problems arrive in the real-world where we must consider network
delays, sensor errors, varying environmental conditions, computational limitations of vehicle hardware,
and the sheer complexity and unpredictability of live traffic scenarios.

5.3. Real-World Relevance and Limitations

Despite these advancements, the review also identified certain limitations. Many AI models face
challenges related to training data quality, real-time performance, and susceptibility to adversarial
attacks. Moreover, not all approaches integrated AI seamlessly with lightweight authentication, which
is crucial in vehicular networks where latency and computational resources are constrained. Studies
such as Ahmad et al. [36] and Ali et al. [35] proposed combining AI with blockchain or elliptic curve
cryptography to enhance security while preserving performance, yet practical implementation of such
hybrid systems remains in early stages.

The studies also suggest a lack of unified frameworks that integrate security from the sensor level
up to the application layer. For instance, while GPS spoofing is often addressed in isolation, LiDAR
and CAN-based spoofing receive comparatively less attention despite being equally critical. Moreover,
the simulation-based nature of many evaluations (e.g., Ming et al. [31]) highlights the gap between
theoretical proposals and real-world testing, suggesting a future need for collaborative efforts with
industry stakeholders for empirical validation.

The systematic literature review (SLR) provided a structured analysis of message spoofing threats
and AI-based mitigation strategies in V2V communication. However, certain limitations must be
acknowledged. First, the review looked at studies published in the last 10 years (2015-2025). This may
have excluded older research or very recent breakthroughs that would have been useful for this study.
Secondly, only peer-reviewed journal articles that were written in English and from specific databases
were considered. By doing this, wemay have overlooked relevant findings from non-English publications
from other databases. Third, most of the studies that were reviewed were based on simulations rather
than real-world experiments, which may have limited the generalizability of the results to real driving
environments. Fourth, the world of AI and cybersecurity is fast-evolving, meaning that newer methods
or threats may have emerged after the literature search was completed. Fifth, although specific databases
were selected, papers that were relevant and met the quality assessment criteria were discovered in
other sources. A larger and more desirable number of papers may have been found if these additional
databases were included from the start. Sixth, the absence of a shared evaluation metric system for
quantitatively measuring the methods in the papers meant that demonstrating fair quantitative results
proved very difficult. Finally, subjective judgment during paper selection and reading could introduce
minor biases, even though there were predefined inclusion and exclusion criteria.

5.4. Validity and Reliability

To ensure the validity and reliability of this systematic literature review, rigorous methodologies
were applied throughout the study. The review followed well-established guidelines, particularly
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those proposed by Kitchenham and Charters [11], which include clearly defined research questions,
transparent inclusion and exclusion criteria, and structured search strategies across multiple academic
databases such as IEEE Xplore, SpringerLink, Scopus, and Google Scholar. These measures enhanced
the construct validity of the review by ensuring that the selected studies were relevant to the research
focus on message spoofing in V2V communication and AI-driven mitigation strategies.

Reliability was further supported through a standardized data extraction process and the use of a
quality assessment checklist, evaluating each study’s clarity, methodology, relevance, and transparency.
Only peer-reviewed and English-language studies published between 2015 and 2025 were included,
which helped maintain consistency in the sources analyzed.

However, the review is subject to certain limitations. Most notably, the exclusion of non-English
publications and gray literature may have limited the scope of potentially relevant findings. Additionally,
because the majority of the included studies were simulation-based, there is a limitation in external
validity, meaning that the findings may not be directly generalizable to real-world conditions. Further-
more, although the selection criteria were predefined, some degree of subjectivity was unavoidable in
interpreting study relevance and quality, which could introduce minor biases.

Despite these limitations, the systematic and replicable nature of the review process strengthens the
internal reliability and provides a dependable foundation for further research into the cybersecurity of
AV systems.

5.5. Future Work

In the future, research should focus on combining AI-based anomaly detection with cryptographic
authentication techniques to create more secure spoofing detection systems for V2V communication.
The detection accuracy andmessage integrity can be strengthened by integrating cryptographic methods
such as message authentication codes with intrusion detection.

Additionally, security frameworks that combine AI with blockchain offer promising potential for de-
centralization and resistance to tampering. Blockchain can help create immutable logs of communication
that make it more difficult for spoofed messages to go undetected.

Another direction for future work is the need to bridge the gap between theory and practice, it is very
important to test spoofing detection solutions in real-world environments under diverse conditions,
including rush hours, weather variations, and sensor noise.

There are many underrepresented spoofing attack types that need to be addressed in future work. GPS
and CAN message spoofing are frequently studied, but attacks targeting LiDAR, radar, and ultrasonic
sensors in the perception layer are less examined. If these attack vectors are more understood and
analyzed, it can help to build comprehensive defense mechanisms.

At present, there is a lack of consistent benchmarks when it comes to evaluation metrics for spoofing
detection. This can make it difficult to assess the real-world performance of competing models and
different security solutions. There is a need for the research community to adopt shared evaluation
metrics and standardized datasets for spoofing detection. By establishing evaluation frameworks that
are based on precision, false positive rates, real-time capability, and more, it would enable clearer
benchmarking and accelerate progress in the field.

Finally, future work could look at the integration of energy-efficient AI models. There is a need to
balance detection performance with computational load in order to make AI-based spoofing detection
applicable in commercial autonomous systems.

6. Conclusions

This study has systematically examined the cybersecurity challenges inherent in autonomous vehicles
(AVs), with a specific focus on message spoofing within Vehicle-to-Vehicle (V2V) communication. As AV
technology advances, the reliance on V2V communication for real-time data exchange among vehicles,
infrastructure, and road users has become critical for enhancing safety and efficiency. However, this
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interconnectivity exposes AVs to significant cybersecurity vulnerabilities, particularly through message
spoofing, which can lead to incorrect decision-making and jeopardize passenger safety.

The findings of this literature review underscore the urgent need for robust cybersecurity mechanisms
to protect AV systems from these threats. Notably, the application of artificial intelligence (AI) presents a
promising avenue for improving security measures. AI-driven techniques, particularly those employing
machine learning and deep learning, have demonstrated their potential in detecting and mitigating
spoofing attacks by identifying anomalies in communication patterns.

Despite these advancements, several challenges persist, including issues of scalability, real-world
applicability, and the need for comprehensive security frameworks. The study highlights the necessity
of integrating multi-layered security strategies that combine cryptographic methods, AI-based anomaly
detection, and fallback protocols to create a resilient defense against spoofing threats.

Furthermore, the review emphasizes the importance of empirical research to validate AI solutions in
real-world scenarios. Future investigations should aim to bridge the gap between theoretical models
and practical implementations, ensuring that AV systems are equipped to withstand evolving cyber
threats.

In conclusion, while significant progress has been made in addressing cybersecurity for AVs, ongoing
research and collaboration among industry stakeholders, regulatory bodies, and the academic commu-
nity are essential for developing secure and reliable autonomous vehicle ecosystems. By prioritizing
these efforts, we can enhance public trust and facilitate the safe integration of AV technology into our
transportation systems.
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A. Appendix A

This is the start of the appendix.

A.1. Project Time Plan

Week Task Description
1–2 Completion of thesis registration, assignment of supervisor and exam-

iner.
3 Initial meeting with the supervisor to discuss the thesis scope and

expectations.
4–6 Define research questions, scope, and objectives. Develop themethodol-

ogy for the systematic literature review (SLR), including search strategy,
inclusion/exclusion criteria, and quality assessment measures. Begin
writing the background chapter.

6–8 Receive and incorporate feedback from the supervisor. Refine method-
ology and background sections.

9–16 Conduct database searches (IEEE Xplore, SpringerLink, Scopus, Google
Scholar). Screen and select relevant papers based on predefined criteria.
Extract and synthesize data.

17–19 Analyze findings, finalize results, and draft the discussion chapter.
20 Write and refine the conclusion and abstract. Present the thesis.
21–22 Perform final proofreading, formatting, and submit the thesis.

Table 3
Project Time Plan
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